
Inspector-Executor Load Balancing Algorithms for
Block-Sparse Tensor Contractions

David Ozog,⇤ Jeff R. Hammond,† James Dinan,† Pavan Balaji,† Sameer Shende,⇤ Allen Malony⇤

⇤University of Oregon {ozog, sameer, malony}@cs.uoregon.edu
†Argonne National Laboratory {jhammond, dinan, balaji}@anl.gov

Abstract—Developing effective yet scalable load-balancing
methods for irregular computations is critical to the successful
application of simulations in a variety of disciplines at petascale
and beyond. This paper explores a set of static and dynamic
scheduling algorithms for block-sparse tensor contractions within
the NWChem computational chemistry code for different degrees
of sparsity (and therefore load imbalance). In this particular
application, a relatively large amount of task information can
be obtained at minimal cost, which enables the use of static
partitioning techniques that take the entire task list as input.
However, fully static partitioning is incapable of dealing with
dynamic variation of task costs, such as from transient network
contention or operating system noise, so we also consider hybrid
schemes that utilize dynamic scheduling within subgroups. These
two schemes, which have not been previously implemented in
NWChem or its proxies (i.e. quantum chemistry mini-apps) are
compared to the original centralized dynamic load-balancing
algorithm as well as improved centralized scheme. In all cases, we
separate the scheduling of tasks from the execution of tasks into
an inspector phase and an executor phase. The impact of these
methods upon the application is substantial on a large InfiniBand
cluster: execution time is reduced by as much as 50% at scale.
The technique is applicable to any scientific application requiring
load balance where performance models or estimations of kernel
execution times are available.

Keywords-Dynamic Load Balancing, Static Partitioning, Tensor
Contractions, Quantum Chemistry, Global Arrays

I. INTRODUCTION

Load balancing of irregular computations is a serious chal-
lenge for petascale and beyond because the growing number
of processing elements (PEs) – which now exceeds 1 million
on systems such as Blue Gene/Q – makes it increasingly more
difficult to find a work distribution that keeps all the PEs
busy for the same period of time. Additionally, any form of
centralized dynamic load balancing, such as master-worker
or a shared counter (e.g., Global Arrays’ NXTVAL [20]),
becomes a bottleneck. The competition between the need
to extract million-way parallelism from applications and the
need to avoid load-balancing strategies that have components
which scale with the number of PEs motivates us to develop
new methods for scheduling collections of tasks with widely
varying cost; the motivating example in this case is the
NWChem computational chemistry package. One of the major
uses of NWChem is to perform quantum many-body theory
methods such as coupled cluster (CC) to either single and
double (CCSD) or triple (CCSDT) order accuracy. Popular
among chemists are perturbative methods such as CCSD(T)

and CCSDT(Q) because of their high accuracy at relatively
modest computational cost.1 In these methods, (T) and (Q)
refer to perturbative a posteriori corrections to the energy
that are highly scalable (roughly speaking, they resemble
MapReduce), while the iterative CCSD and CCSDT steps
have much more communication and load imbalance. Thus,
this paper focuses on the challenge of load balancing these
iterative procedures. However, the algorithms we describe can
be applied to noniterative procedures as well.

In this paper, we demonstrate that the inspector-executor
model (IE) is effective in reducing load imbalance as well
as eliminating the overhead from the NXTVAL dynamic load
balancer. Additionally, we find that IE algorithms are effective
when used in conjunction with static partitioning, which is
done both with task performance modeling and empirical mea-
surements. We present three different IE load-balancing tech-
niques which each display unique properties when applied to
different chemical problems. By examining symmetric (highly
sparse) versus nonsymmetric (less sparse) molecular systems
in the context of these three methods, we better understand
how to open doors to new families of highly adaptable load-
balancing algorithms on modern multicore architectures.

II. BACKGROUND

In this section, we describe NWChem, coupled-cluster
methods, the Global Arrays programming model, and the
Tensor Contraction Engine.

A. NWChem
NWChem [9] is the DOE flagship computational chemistry

package, which supports most of the widely used methods
across a range of accuracy scales (classical molecular dynam-
ics, ab initio molecular dynamics, molecule density-functional
theory (DFT), perturbation theory, coupled-cluster theory, etc.)
and many of the most popular supercomputing architectures
(InfiniBand clusters, Cray XT and XE, and IBM Blue Gene).
Among the most popular methods in NWChem are the DFT
and CC methods, for which NWChem is one of the few
codes (if not the only code) that support these features for
massively parallel systems. Given the steep computational cost
of CC methods, the scalability of NWChem in this context is

1 The absolute cost of these methods is substantial when compared with
density-functional theory (DFT), for example, but this does not discourage
their use when high accuracy is required.

extremely important for real science. Many chemical problems
related to combustion, energy conversion and storage, catal-
ysis, and molecular spectroscopy are untenable without CC
methods on supercomputers. Even when such applications are
feasible, the time to solution is substantial; and even small
performance improvements have a significant impact when
multiplied across hundreds or thousands of nodes.

B. Coupled-Cluster Theory

Coupled-cluster theory [43] is a quantum many-body
method that solves an approximate Schrödinger equation re-
sulting from the CC ansatz,

| CCi = exp(T)| 0i,

where | 0i is the reference wavefunction (usually a Hartree-
Fock Slater determinant) and exp(T) is the cluster operator
that generates excitations out of the reference. Please see
Refs. [11], [6] for more information.

A well-known hierarchy of CC methods exists that provides
increasing accuracy at increased computational cost [5]:

· · · < CCSD < CCSD(T) < CCSDT

< CCSDT (Q) < CCSDTQ < · · · .

The simplest CC method that is generally useful is CCSD [35],
has a computational cost of O(N6

) and storage cost of
O(N4

), where N is a measure of the molecular system
size. The “gold standard” CCSD(T) method [44], [36], [41]
provides much higher accuracy using O(N7

) computation but
without requiring (much) additional storage. CCSD(T) is a
very good approximation to the full CCSDT [32], [46] method,
which requires O(N8

) computation and O(N6
) storage. The

addition of quadruples provides chemical accuracy, albeit at
great computational cost. CCSDTQ [26], [27], [33] requires
O(N10

) computation and O(N8
) storage, while the perturba-

tive approximation to quadruples, CCSDT(Q) [25], [28], [8],
[22], reduces the computation to O(N9

) and the storage to
O(N6

). Such methods have recently been called the “platinum
standard” because of their unique role as a benchmarking
method that is significantly more accurate than CCSD(T) [40].

An essential aspect of an efficient implementation of any
variant of CC is the exploiting of symmetries, which has
the potential to reduce the computational cost and storage
required by orders of magnitude. Two types of symmetry
exist in molecular CC: spin symmetry [16] and point-group
symmetry [10]. Spin symmetry arises from quantum mechan-
ics. When the spin state of a molecule is a singlet, some
of the amplitudes are identical; and thus we need store and
compute only the unique set of them. The impact is roughly
that N is reduced to N/2 in the cost model, which implies
a reduction of one to two orders of magnitude in CCSD,
CCSDT, and CCSDTQ. Point-group symmetry arise from the
spatial orientation of the atoms. For example, a molecule such
as benzene has the symmetry of a hexagon, which includes
multiple reflection and rotation symmetries. These issues are
discussed in detail in Refs. [42], [17]. The implementation of

degenerate group symmetry in CC is difficult; and NWChem,
like most codes, does not support it. Hence, CC calculations
cannot exploit more than the 8-fold symmetry of the D2h

group, but this is still a substantial reduction in computational
cost.

While the exploitation of symmetries can substantially
reduce the computational cost and storage requirements of
CC, these methods also introduce complexity in the imple-
mentation. Instead of performing dense tensor contractions on
rectangular multidimensional arrays, point-group symmetries
lead to block diagonal structure, while spin symmetries lead
to symmetric blocks where only the upper or lower triangle is
unique. This is one reason that one cannot, in general, directly
map CC to dense linear algebra libraries. Instead, block-sparse
tensor contractions are mapped to BLAS at the PE level, lead-
ing to load imbalance and irregular communication between
PEs. Ameliorating the irregularity arising from symmetries in
tensor contractions is one of the major goals of this paper.

C. Global Arrays

Global Arrays (GA) [30], [31] is a PGAS-like global-
view programming model that provides the user with a clean
abstraction for distributed multidimensional arrays with one-
sided access (Put, Get, and Accumulate). GA provides nu-
merous additional functionalities for matrices and vectors, but
these are not used for tensor contractions because of the non-
rectangular nature of these objects in the context of CC. The
centralized dynamic load balancer NXTVAL was inherited from
TCGMSG [20], a pre-MPI communication library. Initially, the
global shared counter was implemented by a polling process
spawned by the last PE, but now it uses ARMCI remote fetch-
and-add, which goes through the ARMCI communication
helper thread [29]. Together, the communication primitives of
GA and NXTVAL can be used in a template for-loop code
that is general and can handle load imbalance, at least until
such operations overwhelm the computation because of work
starvation or communication bottlenecks that emerge at scale.
A simple variant of the GA “get-compute-update” template
is shown in Alg. 1. For computations that are naturally load
balanced, one can use the GA primitives and skip the calls
to NXTVAL, a key feature when locality optimizations are
important, since NXTVAL has no ability to schedule tasks
with affinity to their input or output data. This is one of the
major downsides of many types of dynamic load-balancing
methods—they lack the ability to exploit locality in the same
way that static schemes do.

While there exist several strategies for dynamically assign-
ing collections of tasks to processor cores, most present a
trade-off between the quality of the load balance and scaling
to a large number of processors. Centralized load balancers
can be effective at producing evenly distributed tasks, but they
can have substantial overhead. Decentralized alternatives such
as work stealing [13], [3] may not achieve the same degree
of load balance, but their distributed nature can reduce the
overhead substantially.

Algorithm 1 The canonical Global Arrays programming tem-
plate for dynamic load balancing. NXTVAL() assigns each
loop iteration number to a process that acquires the underlying
lock and atomically increments a global counter. This counter
is located in memory on a single node, potentially leading to
considerable network communication. One can easily gener-
alize this template to multidimensional arrays, multiple loops,
and blocks of data, rather than single elements. As long as the
time spent in FOO is greater than that spent in NXTVAL, Get,
and Update, this is a scalable algorithm.

Global Arrays: A, B
Local Buffers: a, b
count = 1
next = NXTVAL()
for i = 1 : N do

if (next == count) then
Get A(i) into a
b = FOO(a)
Update B(i) with b
next = NXTVAL()

end if
count = count + 1

end for

D. Tensor Contraction Engine
The Tensor Contraction Engine (TCE) [21], [4] is a project

to automate the derivation and parallelization of quantum
many-body methods such as CC. As a result of this project, the
first parallel implementations of numerous methods were cre-
ated and applied to larger scientific problems than previously
possible. The original implementation in NWChem by Hirata
was general (i.e., lacked optimizations for known special
cases) and required significant tuning to scale CC to more than
1,000 processes in NWChem [23]. The tuning applied to the
TCE addressed essentially all aspects of the code, including
more compact data representations (spin-free integrals are
antisymmetrized on the fly in the standard case), reduction
in communication by applying additional fusion that the TCE
compiler was not capable of applying. In some cases, dynamic
load balancing (DLB) was eliminated altogether when the cost
of a diagram (a single term in the CC eqns.) was insignificant
at scale and DLB was unnecessary overhead.

The TCE code generator uses a stencil that is a straightfor-
ward generalization of Alg. 2. For a term such as

Z(i, j, k, a, b, c)+ =

X

d,e

X(i, j, d, e) ⇤ Y (d, e, k, a, b, c), (1)

which is a bottleneck in the solution of the CCSDT equations,
the data is tiled over all the dimensions for each array and
distributed across the machine in a one-dimensional global
array. Multidimensional global arrays are not useful here
because they do not support block sparsity or index permu-
tation symmetries. Remote access is implemented by using
a lookup table for each tile and a GA Get operation. The
global data layout is not always appropriate for the local

Algorithm 2 Pseudocode for the default TCE implementation
of Eq. 1. For clarity, aspects of the Alg. 1 DLB template are
omitted.

Tiled Global Arrays: X, Y, Z
Local Buffers: x, y, z
for all i, j, k 2 Otiles do

for all a, b, c 2 V tiles do
if NXTVAL() == count then

if Symm(i, j, k, a, b, c) == True then
Allocate z for Z(i, j, k, a, b, c) tile
for all d, e 2 V tiles do

if Symm(i, j, d, e) == True then
if Symm(d, e, k, a, b, c) == True then
Fetch X(i, j, d, e) into x
Fetch Y(d, e, k, a, b, c) into y
Contract z(i, j, k, a, b, c)+=

x(i, j, d, e)*y(d, e, k, a, b, c)
end if

end if
end for
Accumulate z into Z(i, j, k, a, b, c)

end if
end if

end for
end for

computation, however; therefore, immediately after the Get
operation completes, the data is rearranged into the appropriate
layout for the computation. Alg. 2 gives an overview of a
distributed tensor contraction in TCE. For compactness of
notation, the Fetch operation combines the remote Get and
local rearrangement. The Symm function is a condensation of
a number of logical tests in the code that determine whether a
particular tile will be nonzero. These tests consider the indices
of the tile and not any indices within the tile because each
tile is grouped such that the symmetry properties of all its
constitutive elements are identical. In Alg. 2, the indices given
for the local buffer contraction are the tile indices, but these
are merely to provide the ordering explicitly. Each tile index
represents a set of contiguous indices so the contraction is be-
tween multidimensional arrays, not single elements. However,
one can think of the local operation as the dot product of two
tiles (Otile and V tile in Algs. 2, 3, and 4).

III. MOTIVATION AND DESIGN

In this section we discuss our motivation for developing
inspector-executor (IE) algorithms, the implementation of the
IE in the TCE-CC module of NWChem, and the design of
our cost partitioning strategy. We begin by characterizing the
function of a simple version of the inspector, then augment
the IE model by incorporating performance models of the
dominant computational kernels. The performance models
provide estimations of task execution time to be fed into
the static partitioner, then to the executor. While the IE
design and implementation is described within the context of

Algorithm 3 Pseudocode for the inspector used to implement
Eq. 1, simple version.

for all i, j, k 2 Otiles do
for all a, b, c 2 V tiles do

if Symm(i, j, k, a, b, c) == True then
Add Task (i, j, k, a, b, c) to TaskList

end if
end for

end for

NWChem’s TCE-CC module, the methods can be applied to
any irregular application where reasonably accurate estimation
of kernel execution times is possible, either analytically or
empirically. In our NWChem implementation, the inspector
initially assigns cost estimations by applying performance
models of computational kernels for the first iteration, then
by doing in situ execution time measurements of tasks for
subsequent iterations.

A. Inspector/Executor
When using Alg. 1 in TCE-based CC simulations, the inher-

ently large number of computational tasks (typically hundreds
of thousands) each require a call to NXTVAL for dynamic
load balancing. Very large systems can potentially require
many billions of fine-grained tasks, but the granularity can
be controlled by increasing the tile size. Although NXTVAL
overhead can be limited by increasing the tile size, it is far
more difficult to balance such a coarse-grained task load while
preventing starvation, so typically a large number of small-
sized tasks is desirable. However, the average time per call to
NXTVAL increases with the number of processes (as shown
below), so too many tasks is detrimental for strong scaling.
This is the primary motivation for implementing the IE.

This increase in time per call to NXTVAL is primarily
caused by contention on the memory location of the counter,
which performs atomic read-modify-write (RMW) operations
(in this case the addition of 1) using a mutex lock. For a
given number of total incrementations (i.e., a given number
of tasks), when more processes do simultaneous RMWs, on
average they must wait longer to access to the mutex. This
effect is clearly displayed in a flood-test microbenchmark (Fig.
2) where a collection of processes calls NXTVAL several times
(without doing any other computation). In this test, only off-
node processes are allowed to increment the counter (via a call
to ARMCI_Rmw); otherwise, the on-node processes would be
able to exploit the far more efficient shared-memory incremen-
tation, which occurs on the order of several nanoseconds.The
average execution time per call to NXTVAL always increases
as more processes are added.

The increasing overhead of scaling with NXTVAL is also
directly seen in performance profiles of the tensor contraction
routines in NWChem. For instance, Fig. 1 shows a profile
of the mean inclusive time for the dominant methods in a
CC simulation of a water cluster with 10 molecules. The
time spent within NXTVAL accounts for about 37% of the

Algorithm 4 Pseudocode for the inspector used to implement
Eq. 1, with cost estimation and static partitioning.

for all i, j, k 2 Otiles do
for all a, b, c 2 V tiles do

if Symm(i, j, k, a, b, c) == True then
Add Task (i, j, k, a, b, c, d, e, w) to TaskList
costw = SORT4 performance model estm(sizes)
for all d, e 2 V tiles do

if Symm(i, j, d, e) == True then
if Symm(d, e, k, a, b, c) == True then

costw = costw + ...
SORT4 performance model estm(sizes)
costw = costw + ...
DGEMM performance model estm(m,n, k)
Compute various SORT4 costs

end if
end if

end for
end if

end for
end for
myTaskList = Static Partition(TaskList)

Fig. 1. Average inclusive-time (in seconds) profile of a 14-water monomer
CCSD simulation with the aug-cc-PVDZ basis for 861 MPI processes across
123 Fusion nodes connected by InfiniBand. The NXTVAL routine consumes
37% of the entire computation. This profile was made using TAU [37]; for
clarity, some subroutines were removed.

entire simulation. We propose an alternate algorithm which
is designed to reduce this overhead by first gathering task
information, then evenly assigning tasks to PEs, and finally
executing the computations.

We collect relevant tensor contraction task information by
breaking the problem into two major components: inspection
and execution (similar to Refs. [1], [15], [14]). In its simplest
form, the inspector agent loops through relevant components
of the parallelized section and collates tasks (Alg. 3). This
phase is limited to computationally inexpensive arithmetic
operations and conditionals that classify and characterize tasks.
Specifically, the first conditional of any particular tensor con-
traction routine in NWChem evaluates spin and point-group
symmetries to determine whether a tile of the tensor contrac-
tion has a nonvanishing element [21], as introduced in section
II-B. Further along, in a nested loop over common indices,
another conditional tests for nonzero tiles of a contraction
operand by spin and spatial symmetry. While the inspector’s
primary purpose is to a create an informative list of tasks
to help accomplish load balance during the executor phase,
it also has this advantage of revealing sparsity information

Algorithm 5 Pseudocode for the executor used to implement
Eq. 1.

for all Task 2 Tasklist do
Extract (i, j, k, a, b, c) from Task
Allocate local buffer for Z(i, j, k, a, b, c) tile
if Symm(i, j, d, e) == True then

if Symm(d, e, k, a, b, c) == True then
Fetch X(i, j, d, e) tile into local buffer
Fetch Y(d, e, k, a, b, c) tile into local buffer
Z(i, j, k, a, b, c) += X(i, j, d, e)*Y(d, e, k, a, b, c)
Accumulate Z(i, j, k, a, b, c) buffer into global Z

end if
end if

end for

by applying spin and spatial symmetry arguments before
designating a particular task.

While the following section describes a more complicated
version of the inspector, the executor is the same in both
cases. The pseudocode for the executor is shown in Alg. 5,
where tasks gathered in the inspection phase are simply looped
over. The executor contains the inner loop of the default TCE
implementation with another set of symmetry conditionals,
which are found to always return true for the cases considered
in this paper (we cannot exclude the possibility that they may
be false in some other cases). Because the inner loop is dense
in the sense that no additional sparsity is achieved at that point,
it is natural to aggregate these computations into a single task
in order to reduce the number of calls to Accumulate, which
is more expensive than either Put or Get because it requires
a remote computation, not just data movement (which might
be done in entirely in hardware with RDMA). Combining all
the inner loop computations in a single task also has the effect
of implying reuse of the output buffer, which is beneficial if
it fits in cache or computation is performed on an attached
coprocessor (while heterogeneous algorithms are not part of
this work, they are a natural extension of it).

B. Task Cost Characterization
The average time per call to NXTVAL increases with the

number of participating PEs, but the IE algorithm as presented
so far will improve strong scaling only as much as the
proportion of tasks eliminated by the spin and spatial sym-
metry argument. DLB with NXTVAL for large non-symmetric
molecular systems (biomolecules usually lack symmetry) will
still be plagued by high overhead due to contention on the
global counter despite our simple inspection. In this section
we further develop the IE model with the intent to eliminate all
NXTVAL calls from the entire CC module (pseudocode shown
in Alg. 4).

By counting the number of FLOPS for a particular tensor
contraction (Fig. 3), we see that a great deal of load imbalance
is inherent in the overall computation. The centralized dynamic
global counter does an acceptable job of handling this imbal-
ance by atomically providing exclusive task IDs to processes

Fig. 2. Flood benchmark showing the execution time per call to NXTVAL for
1 million simultaneous calls. The process hosting the counter is being flooded
with messages, so when the arrival rate exceeds the processing rate, buffer
space runs out and the process hosting the counter must utilize flow control.
The performance gap from 150 to 200 cores is due to this effect occurring at
the process hosting the NXTVAL counter.

that request work. To effectively eradicate the centralization,
we first need to estimate the cost of all tasks, then schedule
the tasks so that each processor is equally loaded.

In the tensor contraction routines, parallel tile-level matrix
multiplications and ordering operations execute locally within
the memory space of each processor. The kernels that consume
the most time doing such computations are the DGEMM and
SORT4 subroutines. The key communication routines are
the Global Arrays get (ga_get) and accumulate (ga_acc)
methods, which consume relatively little time for sizeable
and accurate simulations of interest. For this reason we use
performance model-based cost estimations for DGEMM and
SORT4 to partition the task load of the first iteration of each
tensor contraction (Alg. 4). For each call to DGEMM or SORT4,
the model estimates the time to execute, and accrues it into
costw. Details regarding the specific performance models used
is beyond the scope of this paper, but others have explored the
development of models for such BLAS kernels [34]. During
the first iteration of TCE-CC, we measure the time of each
task’s entire computation (in the executor phase) to capture
the costs of communication along with the computation. This
new measurement serves as the cost which is fed into the static
partitioning phase for subsequent iterations.

C. Static Partitioning
In our IE implementation, the inspector applies the DGEMM

and SORT4 performance models to each tile encountered,
thereby assigning a cost estimation to each task of the ten-
sor contractions for the first iteration. Costs for subsequent
iterations are based on online measurements of the each
task’s entire execution time, which includes communication.
In both cases, the collection of weighted tasks constitutes a
static partitioning problem which must be solved. The goal
is to collect bundles of tasks (partitions) and assign them to
processors in such a way that computational load imbalance
is minimized. In general, solving this problem optimally is
NP-hard [7], so there is a trade-off between computing an

Fig. 3. Total MFLOPS for each task in a single CCSD T2 tensor contraction
for a water monomer simulation. This is a good overall indicator of load
imbalance for this particular tensor contraction. Note that each task is
independent of the others in this application.

ideal assignment of task partitions and the overhead required
to do so. Therefore, our design defers such decisions to a
partitioning library (in our case, Zoltan [12]), which gives
us the freedom to experiment with load-balancing parameters
(such as the balance tolerance threshold) and their effects on
the performance of the CC tensor contraction routines.

Currently we employ static block partitioning, which in-
telligently assigns “blocks” (or consecutive lists) of tasks to
processors based on their associated weights (no geometry or
connectivity information is incorporated, as in graph/hyper-
graph partitioning). However, incorporating task connectivity
in terms of data locality has been shown to be a viable
means of minimizing data access costs [24]. Our technique
focuses on accurately balancing the computational costs of
large task groups as opposed to exploiting their connectivity,
which also matters a great deal at scale. Fortunately, our
approach is easily extendible to include such data-locality
optimizations by solving the partition problem in terms of
making ideal cuts in a hypergraph representation of the task-
data system (see Section V). An application making use of the
IE static partitioning technique may partition tasks based on
any partitioning algorithm.

D. Dynamic Buckets

When conducting static partitioning, variation in task exe-
cution times is undesirable because it leads to load imbalance
and starvation of PEs. This effect is particularly noticeable
when running short tasks where system noise can potentially
counteract execution time estimations and lead to a poor static
partitioning assignment. Furthermore, even when performance
models are acceptably accurate, they generally require deter-
mination of architecture-specific parameters found via off-line
measurement and analysis.

A reasonable remedy to these problems is a scheme we call
dynamic buckets (Fig. 4), where instead of partitioning the task
collection across all PEs, we partition across groups of PEs.

Each group will contain an instance of a dynamic NXTVAL
counter. When groups of PEs execute tasks, the imbalance due
to dynamic variation is amortized since unbiased variation will
lead to significant cancellation. Also, if the groups are chosen
such that each counter is resident on a local compute node
relative to the PE group, then NXTVAL can work within shared
memory, for which performance is considerably better. The
other motivation for choosing the execution group to be the
node is that contention for the NIC and memory bandwidth
in multicore systems is very difficulty to model (i.e. predict)
in a complicated application like NWChem, hence we hope
to observe a reasonable amount of cancellation of this noise
if we group the processes that share the same resources. The
idea is that the node-level resources are mostly fixed and that
noise will average out since the slowdown in one process due
to another’s utilization of the NIC will cancel more than the
noise between processes on different nodes, since there is no
correlation between NIC contention in the latter case. Finally,
with a more coarse granularity of task groups, it is feasible
that load balance would be acceptable even with a round-robin
assignment of tasks to groups (i.e. without performance model
based task estimation) because of the adaptability inherent to
having several dynamic counters.

When using the dynamic buckets approach, tasks are par-
titioned by applying the Longest Processing Time algorithm
[18], which unlike block partitioning, is provably a 4/3 ap-
proximation algorithm (meaning it is guaranteed to produce
a solution within ratio 4/3 of a true optimum assignment).
First, tasks are sorted by execution time estimation in de-
scending order using a parallel quicksort. Then, each task
with the longest execution time estimation is assigned to
the least loaded PE until all tasks are assigned. To increase
the efficiency of the assignment step, the task groups are
arranged in a binary minimum heap data structure where nodes
correspond to groups. Tasks can be added to this minimum
heap in O(log n) time (on average) where n is the number of
task groups.

The dynamic buckets design in Fig. 4 also captures elements
of topology awareness, iterative refinement, and work stealing.
The results in Section IV are based on an implementation
with node-level topology awareness and a single iteration of
refinement based on empirically measured execution times.
We refer the reader to other works [13], [3] for information
on work stealing implementations.

IV. EXPERIMENTAL RESULTS

This section provides experimental performance results of
several experiments on Fusion, an InfiniBand cluster at Ar-
gonne National Laboratory. Each node has 36 GB of RAM
and two quad-core Intel Xeon Nehalem processors running
at 2.53 GHz. Both the processor and network architecture
are appropriate for this study because NWChem performs
very efficiently on multicore x86 processors and InfiniBand
networks. The system is running Linux kernel 2.6.18 (x86 64).
NWChem was compiled with GCC 4.4.6, which was previ-
ously found to be just as fast as Intel 11.1 because of the

Fig. 4. Inspector/Executor with Dynamic Buckets.

heavy reliance on BLAS for floating-point-intensive kernels,
for which we employ GotoBLAS2 1.13. The high-performance
interconnect is InfiniBand QDR with a theoretical throughput
of 4 GB/s per link and 2 µs latency. The communication
libraries used were ARMCI from Global Arrays 5.1, which
is heavily optimized for InfiniBand, and MVAPICH2 1.7
(NWChem uses MPI sparingly in the TCE). Fusion is an
8 core-per-node system, but ARMCI requires a dedicated
core for optimal performance [19]. We therefore launch all
NWChem experiments with 7 MPI processes per node, but
reserve all 8 cores using Fusion’s job scheduler and resource
manager. Because the application is utilizing 8 cores per node,
results are reported in multiples of 8 in Figs. 5, 7, and 8.

First we present an analysis of the strong scaling effects
of using NXTVAL. Then we describe experiments comparing
the original NWChem code with two versions of inspec-
tor/executor: one, called I/E Nxtval, that merely eliminates
the extraneous calls to NXTVAL, and one that eliminates all
calls to NXTVAL in certain methods by using the performance
model to estimate costs and Zoltan to assign tasks statically.
Because the second technique incorporates both dynamic
load balancing and static partitioning, we call it I/E Hybrid.
Finally, we show the improvement of the I/E Dynamic Buckets
approach for a simulation where I/E Hybrid cannot overcome
the effects from variation in task execution time due to system
noise.

A. Scalability of centralized load-balancing

The scalability of centralized DLB with NXTVAL in the
context of CC tensor contractions in NWChem was evaluated
by measuring the percentage of time spent incrementing the
counter (averaged over all processes) in two water cluster
simulations. The first simulation (blue curve in Fig. 5) is
a simulation of 10-water molecules using the aug-cc-pVDZ
basis, and the second simulation (red curve) is the same but
with 14-water molecules. The percentages are extracted from
TAU profiles of the entire simulation run, with the inclusive
time spent in NXTVAL divided by the inclusive time spent in

Fig. 5. Total percentage of execution time spent in NXTVAL for a 10-H2O
CCSD simulation (15 iterations) with the aug-cc-pVDZ basis running on the
Fusion cluster (without IE). The 14-H2O test will not fit in global memory
on 63 nodes (8 cores per node = 504 cores) or fewer. These data points were
extracted from mean inclusive-time profiles as in Fig. 1.

TABLE I
SUMMARY OF THE PERFORMANCE EXPERIMENTS

N2 Benzene 10-H2O 14-H2O
Simulation type CCSDT CCSD CCSD CCSD
of tasks* 261,120 14,280 2,100 4,060
Ave. data size** 7,418 94,674 2.2 mil. 2.7 mil.
Scale limit (cores) 200 320 750 1,200

*from the largest tensor contraction
** in terms of DGEMM input, mk + kn

the application.
Fig. 5 shows that the percentage of time spent in NXTVAL

always increases as more processors are added to the sim-
ulation. This increase is partly because of a decrease in
computation per processor, but also because of contention
for the shared counter, as displayed in Fig. 2. For 10-water
molecules, NXTVAL eventually consumes about 60% of the
overall application time as we approach 1,000 processes. In
the larger 14-water simulation, NXTVAL consumes only about
30% of the time with 1,000 processes, because of the increase
in computation per process relative to the 10-water simulation.
The 14-water simulation failed on 504 cores (as seen in Fig. 5)
because of insufficient global memory.

B. Inspector/Executor DLB
Table I summarizes the NWChem experiments we per-

formed in terms of their task load in the largest tensor con-

TABLE II
300-NODE PERFORMANCE: ORIGINAL CODE FAILS OVER INFINIBAND DUE

TO ARMCI_SEND_DATA_TO_CLIENT() ERROR

Processes 2400
Nodes 300
I/E Nxtval 498.3 s
I/E Hybrid 483.6 s
Original -

Fig. 6. Comparative load balance of a tensor contraction for benzene CCSD
on 210 processes: (a) Original code with total time in NXTVAL overlapped
in yellow (all values are normalized to this maximum execution time). (b)
I/E with superfluous calls to NXTVAL eliminated. (c) First iteration of I/E
with performance modeling and static partitioning (overhead time shown in
red). (d) Subsequent iterations of I/E static (with zero overhead and iterative
refinement). Despite the increase in load variation in (d), the overall time is
reduced by 8% relative to (b).

traction of the simulation. CC simulations fall into two broad
categories, symmetrically sparse and dense (i.e., a benzene
molecule versus an asymmetric water cluster). We found that
problems falling in the sparse category are suitable for the
I/E Nxtval method because they have a large number of
extraneous tasks to be eliminated. While the water cluster
systems can potentially eliminate a similar percentage of tasks,
their relatively larger average task size results in DGEMM
dominating the computation. The differences in task loads
between these problems necessitate different I/E methods for
optimal performance, as shown below in Figs. 7 and 8.

Applying the I/E Nxtval model to a benzene monomer
with the aug-cc-pVTZ basis in the CCSD module results
in as much as 33% faster execution of code compared
with the original (Fig. 7). The I/E Nxtval version consis-
tently performs about 25-30% faster for benzene CCSD.
At high numbers of processes, the original code occasion-
ally fails on the Fusion InfiniBand cluster with an error
in armci_send_data_to_client(), whereas the I/E
Nxtval version continues to scale to beyond 400 processes.
This suggests that the error is triggered by an extremely busy
NXTVAL server.

C. Static Partition

The I/E Hybrid version applies complete static partitioning
using the performance model cost estimation technique to
long-running tensor contractions which are experimentally
observed to outperform the I/E Nxtval version. Fig. 7 shows
that this method always executes in less time than both the
original code and the simpler I/E Nxtval version. Though it is
not explicitly proven by any of the figures, this version of the
code also appears to be capable of executing at any number

of processes on the Fusion cluster, whereas the I/E Nxtval and
original code eventually trigger the ARMCI error mentioned
in the previous section.

Unfortunately, it is a difficult feat to transform the machine-
generated tensor contraction methods from within the TCE
generator, so we have taken a top-down approach where
the generated source is changed manually. Because there are
over 70 individual tensor contraction routines in the CCSDT
module and only 30 in the CCSD module, we currently have
I/E Hybrid code implemented only for CCSD.

D. Dynamic Buckets
I/E Dynamic Buckets (I/E-DB) is usually the method with

the best performance, as seen in Fig. 8. This plot shows the two
most time consuming tensor contractions in a 10-H2O system.
In this problem, I/E Nxtval performs no better than the original
code because of relatively less sparsity and larger task sizes
in the overall computation. I/E Hybrid (not shown) performs
slightly worse than the original code. As explained in section
III-D, this is due to error in the task execution time estimations.
The I/E-DB technique shows up to 16% improvement over
IE-Nxtval due to better load balance when dynamic counters
manage groups of tasks.

V. RELATED WORK

Alexeev and coworkers have applied novel static load bal-
ancing techniques to the fragment molecular orbital (FMO)
method [2]. FMO differs in computational structure from
iterative CC, but the challenge of load balancing is similar,
and their techniques parallel the IE cost estimation model. The
FMO system is first split into fragments that are assigned to
groups of CPU cores. The size of those groups is chosen based
on the solution of an optimization problem, with three major
terms representing time that is linearly scalable, nonlinearly
scalable, and nonparallel.

Hypergraph partitioning was used by Krishnamoorthy and
coworkers to schedule tasks originating from tensor contrac-
tions [24]. Their techniques optimize static partitioning based
on common data elements between tasks. Such relationships
are represented as a hypergraph, where nodes correspond
to tasks, and hyperedges (or sets of nodes) correspond to
common data blocks the tasks share. The goal is to optimize
a partitioning of the graph based on node and edge weights.
Their hypergraph cut optimizes load balance based on data
element size and total number of operations, but such research
lacks a thorough model for representing task weights, which
the IE cost estimation model accomplishes.

The Cyclops Tensor Framework [38], [39] implements
CC using arbitrary-order tensor contractions which are im-
plemented by using a different approach from NWChem.
Tensor contractions are split into redistribution and contraction
phases, where the former permutes the dimensions such that
the latter can be done by using a matrix-matrix multiplica-
tion algorithm such as SUMMA [45]. Because CTF uses a
cyclic data decomposition, load imbalance is eliminated, at
least for dense contractions. Point-group symmetry is not yet

Fig. 7. Benzene aug-cc-pVQZ I/E comparison for a CCSD simulation.

implemented in CTF and would create some of the same type
of load imbalance as seen in this paper, albeit at the level of
large distributed contractions rather than tiles. We hypothesize
that static partitioning would be effective at mitigating load-
imbalance in CTF resulting from point-group symmetry.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an alternate approach for conducting
load balancing in the NWChem CC code generated by the
TCE. In this application, good load balance was initially
achieved by using a global counter to assign tasks dynamically,
but application profiling reveals that this method has high
overhead which increases as we scale to larger numbers of
processes. Splitting each tensor contraction routine into an
inspector and an executor component allows us to evaluate the
system’s sparsity and gather relevant cost information regard-
ing tasks, which can then be used for static partitioning. We
have shown that the inspector-executor algorithm obviates the
need for a dynamic global counter when applying performance
model prediction, and can improve the performance of the
entire NWChem coupled cluster application. In some cases the
overhead from a global counter is so high that the inspector-
executor algorithm enables the application to scale to a number
of processes that previously was impossible because of the
instability of the NXTVAL server when bombarded with tasks.

The technique of generating performance models for
DGEMM and SORT4 to estimate costs associated with load
balancing is general to all compute-kernels and can be applied
to applications that require large-scale parallel task assign-
ment. While other noncentralized DLB methods (such as work
stealing and resource sharing) could potentially outperform
such static partitioning, such methods tend to be difficult
to implement and may have centralized components. The
approach of using a performance model and a partitioning
library together to achieve load balance is easily parallelizable
(though in NWChem tensor contractions, we have found a
sequential version to be faster because of the inexpensive
computations in the inspector) and easy to implement and

Fig. 8. Comparison of I/E Nxtval with I/E Dynamic Buckets for the two
most time consuming tensor contractions during a 10-H2O simulation, t2_7
and t2_7_3. The execution time of the original code is not shown because
it overlaps the performance of I/E Nxtval.

requires few changes to the original application code.
Because the technique is readily extendible, we plan to

improve our optimizations by adding functionality to the
inspector. For example, we can exploit proven data locality
techniques by representing the relationship of tasks and data
elements with a hypergraph and decomposing the graph into
optimal cuts [24].

ACKNOWLEDGMENTS

This research used resources of the Argonne Leadership
Computing Facility and Laboratory Computing Resource Cen-
ter at Argonne National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under
contract DE-AC02-06CH11357.

The research at the University of Oregon was supported by
grants from the U.S. Department of Energy, Office of Science,
under contracts DE-FG02-07ER25826, DE-SC0001777, and
DE-FG02-09ER25873.

REFERENCES

[1] Gagan Agrawal, Alan Sussman, and Joel Saltz. An integrated run-
time and compile-time approach for parallelizing structured and block
structured applications. IEEE Transactions on Parallel and Distributed
Systems, 6:747–754, 1995.

[2] Yuri Alexeev, Ashutosh Mahajan, Sven Leyffer, Graham Fletcher, and
Dmitri Fedorov. Heuristic static load-balancing algorithm applied to the
fragment molecular orbital method. Supercomputing, 2012.

[3] Humayun Arafat, P. Sadayappan, James Dinan, Sriram Krishnamoorthy,
and Theresa L. Windus. Load balancing of dynamical nucleation theory
Monte Carlo simulations through resource sharing barriers. In IPDPS,
pages 285–295, 2012.

[4] Alexander A. Auer, Gerald Baumgartner, David E. Bernholdt, Alina
Bibireata, Venkatesh Choppella, Daniel Cociorva, Xiaoyang Gao, Robert
Harrison, Sriram Krishnamoorthy, Sandhya Krishnan, Chi-Chung Lam,
Qingda Lu, Marcel Nooijen, Russell Pitzer, J. Ramanujam, P. Sa-
dayappan, and Alexander Sibiryakov. Automatic code generation for
many-body electronic structure methods: the tensor contraction engine.
Molecular Physics, 104(2):211–228, 2006.

[5] Rodney J. Bartlett. Coupled-cluster approach to molecular structure and
spectra: a step toward predictive quantum chemistry. Journal of Physical
Chemistry, 93(5):1697–1708, 1989.

[6] Rodney J. Bartlett and Monika Musiał. Coupled-cluster theory in
quantum chemistry. Reviews of Modern Physics, 79(1):291–352, 2007.

[7] S. H. Bokhari. On the mapping problem. IEEE Trans. Comput.,
30(3):207–214, March 1981.

[8] Yannick J. Bomble, John F. Stanton, Mihály Kállay, and Jürgen Gauss.
Coupled-cluster methods including noniterative corrections for quadru-
ple excitations. Journal of Chemical Physics, 123(5):054101, 2005.

[9] E. J. Bylaska et. al. NWChem, a computational chemistry package for
parallel computers, version 6.1.1, 2012.

[10] F.A. Cotton. Chemical Applications of Group Theory. John Wiley &
Sons, 2008.

[11] T. Daniel Crawford and Henry F. Schaefer III. An introduction to cou-
pled cluster theory for computational chemists. In K. B. Lipkowitz and
D. B. Boyd, editors, Reviews in Computational Chemistry, volume 14,
chapter 2, pages 33–136. VCH Publishers, New York, 2000.

[12] Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and
Courtenay Vaughan. Zoltan data management services for parallel
dynamic applications. Computing in Science and Engineering, 4(2):90–
97, 2002.

[13] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy,
and Jarek Nieplocha. Scalable work stealing. In Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis, SC ’09, pages 53:1–53:11, New York, 2009. ACM.

[14] Stephen Fink and Scott Baden. Runtime support for multi-tier pro-
gramming of block-structured applications on SMP clusters. In Yutaka
Ishikawa, Rodney Oldehoeft, John Reynders, and Marydell Tholburn,
editors, Scientific Computing in Object-Oriented Parallel Environments,
volume 1343 of Lecture Notes in Computer Science, pages 1–8. Springer
Berlin / Heidelberg, 1997.

[15] Stephen J. Fink, Scott B. Baden, and Scott R. Kohn. Efficient run-time
support for irregular block-structured applications. Journal of Parallel
and Distributed Computing, 50(1–2):61–82, 1998.

[16] J. Fuchs and C. Schweigert. Symmetries, Lie Algebras and Representa-
tions: A Graduate Course for Physicists. Cambridge University Press,
2003.

[17] Jürgen Gauss, John F. Stanton, and Rodney J. Bartlett. Coupled-cluster
open-shell analytic gradients: Implementation of the direct product
decomposition approach in energy gradient calculations. Journal of
Chemical Physics, 95(4):2623–2638, 1991.

[18] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM
Journal on Applied Mathematics, 17(2):416–429, 1969.

[19] Jeff R. Hammond, Sriram Krishnamoorthy, Sameer Shende, Nichols A.
Romero, and Allen D. Malony. Performance characterization of global
address space applications: a case study with NWChem. Concurrency
and Computation: Practice and Experience, 24(2):135–154, 2012.

[20] Robert J. Harrison. Portable tools and applications for parallel com-
puters. International Journal of Quantum Chemistry, 40(6):847–863,
1991.

[21] So Hirata. Tensor Contraction Engine: Abstraction and automated
parallel implementation of configuration-interaction, coupled-cluster,
and many-body perturbation theories. Journal of Physical Chemistry
A, 107:9887–9897, 2003.

[22] Mihály Kállay and Jürgen Gauss. Approximate treatment of higher
excitations in coupled-cluster theory. Journal of Chemical Physics,
123(21):214105, 2005.

[23] Karol Kowalski, Jeff R. Hammond, Wibe A. de Jong, Peng-Dong Fan,
Marat Valiev, Dunyou Wang, and Niranjan Govind. Coupled cluster
calculations for large molecular and extended systems. In Jeffrey R.
Reimers, editor, Computational Methods for Large Systems: Electronic
Structure Approaches for Biotechnology and Nanotechnology. Wiley,
2011.

[24] Sriram Krishnamoorthy, Ümit V. Çatalyürek Umit Catalyurek, Jarek
Nieplocha, and Atanas Rountev. Hypergraph partitioning for automatic
memory hierarchy management. In Supercomputing (SC06), 2006.

[25] Stanislaw A. Kucharski and Rodney J. Bartlett. Coupled-cluster meth-
ods that include connected quadruple excitations, T4: CCSDTQ-1 and
Q(CCSDT). Chemical Physics Letters, 158(6):550–555, 1989.

[26] Stanislaw A. Kucharski and Rodney J. Bartlett. Recursive interme-
diate factorization and complete computational linearization of the
coupled-cluster single, double, triple, and quadruple excitation equations.
Theoretical Chemistry Accounts: Theory, Computation, and Modeling
(Theoretica Chimica Acta), 80:387–405, 1991.

[27] Stanislaw A. Kucharski and Rodney J. Bartlett. The coupled-cluster

single, double, triple, and quadruple excitation method. Journal of
Chemical Physics, 97(6):4282–4288, 1992.

[28] Stanislaw A. Kucharski and Rodney J. Bartlett. An efficient way
to include connected quadruple contributions into the coupled cluster
method. Journal of Chemical Physics, 108(22):9221–9226, 1998.

[29] Jarek Nieplocha and Bryan Carpenter. ARMCI: A portable remote
memory copy library for distributed array libraries and compiler run-
time systems. In Parallel and Distributed Processing, pages 533–546,
London, UK, 1999. Springer-Verlag.

[30] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield.
Global arrays: a portable “shared-memory” programming model for
distributed memory computers. In Supercomputing ’94: Proceedings
of the 1994 ACM/IEEE conference on Supercomputing, pages 340–349,
New York, 1994. ACM.

[31] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield.
Global arrays: A non-uniform-memory-access programming model for
high-performance computers. The Journal of Supercomputing, 10:10–
197, 1996.

[32] Jozef Noga and Rodney J. Bartlett. The full CCSDT model for molecular
electronic structure. Journal of Chemical Physics, 86(12):7041–7050,
1987.

[33] Nevin Oliphant and Ludwik Adamowicz. Coupled-cluster method
truncated at quadruples. The Journal of Chemical Physics, 95(9):6645–
6651, 1991.

[34] Elmar Peise and Paolo Bientinesi. Performance modeling for dense
linear algebra. In Proceedings of the 3rd International Workshop on
Performance Modeling, Benchmarking and Simulation of High Perfor-
mance Computer Systems (PMBS12), November 2012.

[35] George D. Purvis III and Rodney J. Bartlett. A full coupled-cluster
singles and doubles model: the inclusion of disconnected triples. Journal
of Chemical Physics, 76(4):1910–1918, 1982.

[36] Krishnan Raghavachari, Gary W. Trucks, John A. Pople, and Martin
Head-Gordon. A fifth-order perturbation comparison of electron corre-
lation theories. Chemical Physics Letters, 157:479–483, May 1989.

[37] Sameer S. Shende and Allen D. Malony. The tau parallel performance
system. Int. J. High Perform. Comput. Appl., 20(2):287–311, May 2006.

[38] Edgar Solomonik. Cyclops Tensor Framework.
http://www.eecs.berkeley.edu/ solomon/cyclopstf/index.html.

[39] Edgar Solomonik, Devin Matthews, Jeff Hammond, and James Demmel.
Cyclops Tensor Framework: reducing communication and eliminating
load imbalance in massively parallel contractions. In Proceedings of the
International Parallel and Distributed Processing Symposium (IPDPS),
may 2013.

[40] John Stanton. This remark is attributed to Devin Matthews.
[41] John F. Stanton. Why CCSD(T) works: a different perspective. Chemical

Physics Letters, 281:130–134, 1997.
[42] John F. Stanton, Jürgen Gauss, John D. Watts, and Rodney J. Bartlett.

A direct product decomposition approach for symmetry exploitation
in many-body methods, I: Energy calculations. Journal of Chemical
Physics, 94(6):4334–4345, 1991.

[43] Jiřı́ C̆ı́žek. On the correlation problem in atomic and molecular sys-
tems. calculation of wavefunction components in Ursell-Type expansion
using quantum-field theoretical methods. Journal of Chemical Physics,
45(11):4256–4266, December 1966.

[44] Miroslav Urban, Jozef Noga, Samuel J. Cole, and Rodney J. Bartlett.
Towards a full CCSDT model for electron correlation. Journal of
Chemical Physics, 83(8):4041–4046, 1985.

[45] R. A. Van De Geijn and J. Watts. SUMMA: Scalable universal
matrix multiplication algorithm. Concurrency: Practice and Experience,
9(4):255–274, 1997.

[46] John D. Watts and Rodney J. Bartlett. The coupled-cluster single,
double, and triple excitation model for open-shell single reference
functions. Journal of Chemical Physics, 93(8):6104–6105, 1990.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display publicly, by or on
behalf of the Government.

	Introduction
	Background
	NWChem
	Coupled-Cluster Theory
	Global Arrays
	Tensor Contraction Engine

	Motivation and Design
	Inspector/Executor
	Task Cost Characterization
	Static Partitioning
	Dynamic Buckets

	Experimental Results
	Scalability of centralized load-balancing
	Inspector/Executor DLB
	Static Partition
	Dynamic Buckets

	Related Work
	Conclusions and Future Work
	References

